学科报告
当前位置: 首页 > 科技专著>学科报告

运动医学分会--二十一世纪运动疗法新进展

来源: 发布日期:2011-10-27 19:03:04浏览:5951次

 

二十一世纪运动疗法新进展

励建安    刘元标

南京医科大学

澳大利亚昆士兰科技大学

运动疗法是运动医学与康复医学的交叉点,也是非药物治疗最重要的组成之一。21世纪以来,运动疗法的临床应用取得了新的进展,现扼要综述如下。

    一、脏器疾病

1、心血管疾病

1)运动方案制定的个体化:有研究比较12个月的心脏康复、传统治疗和健康宣教的效果,发现心脏康复仅仅使高密度脂蛋白在治疗前低于40单位的患者得到了更大幅度的提高1。美国心脏病学会(2007年)强烈建议症状限制性运动试验是所有以运动训练为主要内容的心脏康复程序的前提条件,需要根据危险度分层制定个体化的运动方案,并根据临床情况及时调整训练内容2

2)运动训练的心血管机制:运动训练可以通过直接或者反射通路调节心衰患者的交感神经兴奋性,如改善压力反射的敏感性和心率变异、降低血液儿茶酚胺水平、血管紧张素II和血管加压素以及脑钠肽等3;也能改善高血压患者压力反射的敏感性4。动物实验表明,长期有氧训练使慢性心衰新西兰兔的肾脏交感神经活性降低,改善压力反射时血压与心率的关系(从2.2+/-0.2增至4.6+/-0.7 bpm/mmHg, P<0.01)和肾交感神经活性,同时增加铜-锌超氧化物歧化酶的生成和减少促氧化物的生成。因此,长期运动训练降低心衰者自主神经活性主要是通过上调中枢抗氧化和抑制中枢促氧化机制共同完成的5。一氧化氮合酶介导运动训练对缺血-再灌注损伤的保护作用6。循环抗阻训练使慢性心衰患者肌肉线粒体ATP生成率 (MAPR)、代谢酶活性、毛细血管密度显著提高;碳水化合物代谢能力增强和最大摄氧量(VO2max)提高;VO2max增加与MAPR具有高度相关性,其中70%的增加是由于MARP增高所致7

3)外周血管疾病的运动治疗:虽然间歇性跛行患者单次大负荷运动的急性反应使血管内皮功能下降,但经过较长时间运动治疗(3/周,共6周),单次大负荷运动前、后即刻的血管内皮功能指数均比6周前有了显著提高,说明运动训练有助于改善患者血管内皮细胞功能,同时延长无疼痛行走距离8。下肢血管旁路移植术后的活动平板训练(2/周,4~10周)使最大无痛步行距离增加175.4%、踝臂指数增加0.23;而对照组仅分别增加了3.8%0.089

4)训练方案:心脏康复方案不仅限于运动治疗。美国心脏学会、美国心血管和肺康复学会的定义是:心脏康复应同时包括消除危险因素、调整生活方式、减少残疾发生的所有有效措施2。英国NICE (National Institute for Health and Clinical Excellence) 指南也提出心脏康复是包括运动训练的综合措施10。但是运动治疗仍然是心脏康复的主要内容2, 11。运动训练通常包括有氧训练和抗阻训练。有氧训练方案包括步行、平板、自行车、划船、爬楼梯、踏车训练等运动方式,强度50~80%VO2max20~60 min/次,3~5/周。而循环抗阻训练一般是10~15/组、1~3/日。此外还应制定个体化的日常活动方案以增强运动训练的效果,同时保证活动和运动训练的安全性2

5)训练强度:有研究将9对单卵双生的健康人作为对象,分为大运动量组和低运动量组(两组VO2MAX差别为18±10%),结果发现两组对象的心肌血流储备、心脏血管和外周血管内皮功能均无显著差别12。尚未确定慢性心衰患者最佳训练效应的合适强度。Wisloff等比较中等强度运动 (75%最大心率) 和间歇性运动 (95%最大心率) 对心梗后心衰患者的影响,训练3/周,共12周。结果发现间歇性运动和中等强度运动使VO2max增加46%14%;间歇性运动使左心室舒张末期和收缩末期容量下降18%25%,射血分数 (EF)增加35%,脑钠肽下降了40%,血管内皮功能和线粒体功能增强13

2、肺疾病 

1)运动耐力:COPD患者运动能力减退常常是由于通气能力减退和通气需求增加这一对矛盾引起。近年来逐渐发现运动时给予氧气补充有助于提高运动能力,有较多研究试图探讨氧疗与运动治疗结合是否有协同作用从而提高疗效。Bradley JM等的临床荟萃分析提示,无论是需要长期使用氧疗还是仅在运动锻炼时使用氧疗的患者,日常活动或运动锻炼同时进行氧疗均有助于提高运动耐力和最大运动能力,改善呼吸困难和提高血氧含量14。但是Nonoyama等综合5个随机对照研究后认为,运动中的氧疗延长定量运动时间、降低Berg指数;但是对于延长极量运动、功能性运动(如六分钟步行距离)、生活质量以及血氧浓度等没有明显效果15。由于所分析的临床样本量较小(31个研究包含549位患者),运动时氧疗的效果尚难以做出最后判断,但是结果仍然证明运动治疗可改善患者运动能力和生活质量。

2)康复方案:目前肺康复常采用8周程序16Skumlien等人观察4周强化康复治疗对40GOLD (Global Initiative for Chronic Obstructive Lung Disease) II~IV级患者的影响,并与病情类似的20位患者进行比较。结果每周5次以70%最大运动能力为强度的耐力训练和每周3~472%15RM为强度的抗阻训练4周以后,与对照组相比,治疗组的生活质量指数 (St George’s Respiratory Questionnaire, SGRQ) 下降了7,上下肢最大收缩力增加6% 15%VO2MAX增加6%,最大工作能力提高60%,平板耐力测试时间延长93%定量负荷下呼吸减慢和呼吸困难症状显著减轻。男性患者6分钟步行测试增加的距离显著高于女性17。三周内接受12~15次的连续或者间断的运动治疗后,两组患者CRDQ生活质量指数、六分钟步行距离等与治疗前相比都有显著提高,但无组间差异18O’Neill比较6周运动训练对COPD患者运动功能和慢性呼吸疾病问卷 (Chronic Respiratory Disease Questionnaire, CRDQ) 的影响,结果发现每周1次门诊康复治疗加2次自我锻炼与每周2次门诊康复治疗加1次自我锻炼(共6周)对运动功能等无明显影响,但6个月后肺康复疗效基本消失19

3)疗效维持: Cockram等人总结四年肺康复的经验后认为,每周一次的社区维持性训练课加上每周3~5次的自我锻炼可以维持肺康复的治疗效果,平均随访18个月以后的重复测量显示仍然维持相当的锻炼效果20Spencer等研讨每周一次的门诊康复治疗加家庭内的自我锻炼8周对肺康复有积极的疗效16

3、糖尿病

1)运动训练量:美国糖尿病学会 (ADA)21、欧洲糖尿病研究会 (European Association for the Study of Diabetes, EASD)22和美国内科医师学会 (American College of Physicians, ACP)23都对运动的治疗作用作了明确的阐述。如美国糖尿病学会指南提出,为了更好控制血糖、维持体重和减少心血管疾病的危险因素,患者应该积极参加每周不少于150分钟的中等强度有氧运动或者不少于90分钟的高强度有氧运动,分三天完成,最好能够隔天参加运动21

2)运动训练强度:患者参加每周3次的耐力训练,每次训练量要达到400kcal;每周2~3次,每次训练量达到500kcal37, 38。超重或者肥胖而无并发症的2型糖尿病患者,运动总量不能低于每周1200kcal,大致相当于170~200分钟或者19km的步行39。抗阻训练的运动强度是每个肌群完成38~10次以70~80%1RM为阻力的训练23。同时还需要注意患者并发症情况,尽可能在运动训练前接受心电图负荷试验以确定恰当的运动强度。此外,尽量避免在同一天对同一组肌群同时进行耐力训练和抗阻训练23。单次运动后胰岛素敏感性增高可持续2~48小时,因此建议患者可以每天运动训练,至少隔天要参加运动,不应出现连续两天不运动的情况21

3)运动降糖机制:单次或长期耐力训练有助于降低血糖早已公认。运动后即刻胰岛素敏感性增强的机制主要包括骨骼肌的糖转运系统活性增强在运动终止后仍能持续一段时间24、肌糖原和肝糖原储备在运动中的消耗25以及运动训练终止后骨骼肌血流量的增加等26。长期耐力训练可以增强胰岛素抵抗者、年轻和老年2型糖尿病患者的胰岛素敏感性,也可以改善脑卒中后糖耐量异常者的胰岛素敏感性27。可能的机制包括改善机体脂肪代谢28, 29和减轻炎症反应29、骨骼肌GLUT-4表达增加和一氧化氮诱导的骨骼肌血流增加30以及减少肝糖原生成31等。

4)抗阻训练的作用:无论是单次或者长期的抗阻训练都有明显增加胰岛素敏感性和增加糖耐量的作用32-35。长期抗阻训练还能增强骨骼肌,从而提高整个机体的糖处理能力332型糖尿病患者严格遵从医嘱参与耐力训练的比例相当低32。因此,有学者认为耐力训练和抗阻训练都是2型糖尿病患者改善代谢能力和提高生活质量的运动措施36

4、肥胖症

1)老人:Villareal等人证明6个月每周3次的运动训练不但使身体虚弱的老年人体重减轻8.4%,也使身体机能指数、VO2max以及功能状态问卷得分有明显改善。此外,治疗组肌力、行走速度、障碍通过能力、单腿支撑时间等也都有显著增加40

2)儿童:运动治疗未改变肥胖患儿身体组分,但确实改善糖代谢能力。每周3次,每次1小时的运动训练可以在8周以后使肥胖患儿的胰岛素敏感性增高、心肺功能增强41

3)运动消耗和饮食摄入:Catenacci在综述42中认为,大部分关于减肥的随机对照研究显示运动训练本身可以获得一定的效果,但是减肥绝对值较小(约0.1~5.2kg)。部分研究提示如果每天能量摄入少于消耗500~700kCal,可以在短期内使体重下降6~8kg43, 44

二、骨关节疾病

1、运动损伤

1)跳跃膝: 运动员的常见损伤,53%的患者为此终止运动生涯45。伸膝肌群离心性运动训练可以减轻膝关节疼痛、改善运动功能46, 47,且常以下蹲作为基本训练动作。但是下蹲运动时髌韧带负荷受到躯干角度、侧向重心偏移和小腿肌肉韧带张力等因素的影响,因此提出了在25度的斜板上站立进行股四头肌离心收缩训练的方案48, 49,训练时要求患者尽可能保持躯干直立站立于25度的斜板上,垫高足后部以放松小腿肌肉,进而缓慢屈膝至70°;并且在训练中增加负重量使患者在离心收缩时产生能够忍受的疼痛。结果证明15次×3组,每天2次,每周7天,共12周的离心收缩训练,使124832个月49时患者的膝关节疼痛和功能改善效果均比向心性收缩训练组明显。

2)踝关节损伤:近年来系列研究提出诸多损伤机制来解释功能性不稳定,如肌肉力量、关节本体感觉、姿势控制、神经传导速度以及神经肌肉反应时间,根据这些可能机制提出的运动方案主要强调本体感觉50、力量增强训练51以及协调性训练52等。踝关节功能性不稳定者步行摆动相末期和足跟触地时踝关节可处于明显的内翻状态53,内翻扭力可使踝关节外侧韧带和关节囊等组织损伤,使本体感觉减退,进而使中枢神经系统对踝关节的控制减弱和导致反复损伤。踝关节外侧韧带扭伤后早期在踝关节保护(使用弹性绷带、活动性支具等)基础上进行运动治疗与静态踝支具方案相比,运动治疗使更多患者回归工作和运动54。运动治疗可使踝关节扭伤复发率降低(RR: 0.37),增加踝背屈的能力55

2、骨关节炎

1)治疗作用:骨关节炎是最常见的疾病之一,髋和膝骨性关节炎者超过70%见于65岁以上老年人 56Thomas等对786位膝骨关节炎患者进行两年随访研究,分为运动组、定期电话咨询、运动+电话咨询以及对照组,每6个月评估一次。参加运动治疗的患者在所有4次评估时疼痛程度都轻于不运动者5725060岁以上的膝骨关节炎患者,18个月以后有氧运动和力量训练组均比对照组具有更好的日常生活活动能力58Mangani等的研究也显示力量训练和有氧运动训练有类似效果59221位患者进行股四头肌肌力训练或者关节活动度训练,随访30个月表明,肌力训练比关节活动度训练能更好地维持肌力和延缓关节病变的进展60

2)作用机制: Foley等利用MRI测量膝关节软骨的体积、胫骨平台面积以及软骨缺损计分,并进行了2年随访,发现关节软骨体积、胫骨平台面积的年度变化率与下肢肌力基础值呈正相关;与下肢肌力增加呈负相关,体力活动能力与关节软骨体积变化正相关61

3、骨质疏松

1)治疗作用:Bonaiuti的荟萃分析综合18个随机对照研究共1423位绝经后妇女,结果表明无论是否存在骨质疏松,有氧运动和力量训练都能提高骨密度。中等强度的步行训练能同时增加脊柱和髋关节的骨密度62。有研究认为有氧运动和力量训练对防治绝经前或绝经后妇女脊柱的骨质疏松都有积极的作用63309位类风湿性关节炎患者进行每周两次75分钟的高强度运动治疗,每6个月评价骨密度变化,结果显示高强度训练可有效地阻止骨量丢失64。但另一项研究发现力量训练本身对类风湿关节炎患者的骨密度无明显效果65。(2)瘫痪的影响:偏瘫侧上下肢的骨量丢失在第一年分别可达到10%20%66。因此有学者建议在脑卒中综合康复治疗方案中,应该将增加骨密度、减少骨量丢失作为重要内容之一;脊髓损伤患者也有明显骨量丢失和骨折发病率增加67。截瘫患者的骨盆和下肢,四肢瘫患者的骨盆、下肢以及上肢都是容易发生骨质疏松的常见部位。一定强度的运动可能可以保持上肢的骨质密度,而对下肢的作用效果相对较差68。但是运动治疗的效果不尽一致。如同样采用功能性电刺激诱导的踏车运动,有报道认为对提高骨质密度无效69, 70;而Mohr等发现一年训练后,胫骨近端的骨质密度增高10%71。对20SCI患儿的研究显示,低负荷、高频率机械刺激6个月使胫骨近端骨密度增加17.7%,而对照组下降11.9%72

4、脊柱疾病

每天15分钟、每周3次的运动治疗结合每天上床前15分钟的腰部冷疗,可以使椎间盘源性腰痛患者在12个月随访期内服用止痛药物减少,70% 受试者疼痛程度减轻50%12个月的复发率也明显降低73。单纯运动治疗或结合行为指导等可以在6周内缓解亚急性腰痛患者的疼痛症状,改善运动功能74-75

5、关节手术后

美国国立卫生研究院2003年发表的关于膝关节置换术的专家共识认为,膝关节置换术后的康复治疗是研究最不充分却被广泛使用的措施76。膝关节置换术的最主要目的是消除由于骨性关节炎等原因导致的疼痛并改善关节功能。手术确实可缓解关节疼痛,但是术后患者仍然残留功能障碍如关节挛缩77、肌力减退78-80、步态和活动异常81-83等。康复治疗包括早期踝泵练习、等长收缩练习、力量训练、关节活动度训练等,康复治疗结果与理想目标仍有较大距离。骨关节炎常会破坏关节周围组织从而引起本体感觉异常84而手术对于膝关节本体感觉功能的影响尚无统一意见84-87

6、骨折后

1)早期康复:桡骨远端移位骨折切开复位分段内固定术后第一周开始被动和主动关节活动度训练,11个月随访,关节活动范围、上肢的整体活动能力以及工作能力均显著改善88。肱骨近段骨折固定术后立即开始运动治疗与制动三周以后开始运动治疗相比,术后1年时两组患者患侧肩关节功能障碍的比例分别是42.8%72.5%2年时功能障碍比例分别为43.2%59.5%。作者认为早期运动治疗可以加速功能的恢复,尤其在术后一年内功能改善更加明显;而术后前3周的制动治疗使患者在术后两年内的功能恢复进展缓慢89。股骨囊内骨折经患肢站立和行走训练为主的早期运动治疗有效,如FIM评分、疼痛分级和髋关节评分;接受积极治疗的13位患者中有12位能独立行走,而对照组无一例患者恢复行走功能90

2)运动方式:渐进性抗阻训练可以增强髋关节骨折老年人的肌力和下肢峰值力矩,下肢肌力改善与训练的强度具有高度相关性9116周社区内运动训练程序有助于改善髋关节骨折老人的功能性移动能力、平衡能力、下肢力量和日常生活活动能力90。运动再学习理论指导的运动治疗和常规运动治疗及行为宣教的研究提示,骨折后624周两组患者的Impairment如握力、腕关节活动范围及疼痛程度等和活动限制、参与受限没有明显差别,常规情况下,患者接受一次的治疗咨询和指导已经足够92

3)训练安全性:Mangione等进行的初步研究表明髋关节骨折老年患者可以在家庭内完成治疗师个别治疗下的中、高强度运动训练。渐进性抗阻训练和有氧训练都显著延长步行距离,提高肌力、行走速度和整体运动功能而未发现明显的不良反应93

三、神经系统疾病

1、脑卒中

1)力量训练:大量研究表明力量训练可以增强脑卒中患者的肌力(增加7~150%),但是尚未证明力量训练对患者功能性活动和日常生活活动能力的作用94-96

2)强化训练:Allison97研究强化训练组与传统治疗组14-28天训练的结果,证明出院12周后强化组Berg平衡指数以及躯干控制能力提高幅度较大。但是强化组10位患者中有3人在治疗第一周时就由于疲劳退出治疗。强化功能性电刺激辅助运动训练(1小时/天,连续15~20天)与常规强度(15分钟感觉强度电刺激/天,4/周)相比,可以使脑卒中发病3个月内的患者上肢功能的Wolf运动功能试验指数显著提高98

3)上肢功能:有报道6周主动运动加神经肌肉电刺激虽然未能提高Fugl-Meyer评分,但行为活动和运动活动都有明显改善并维持了6个月99。机器人辅助训练改变了过去替代运动的思路,致力于通过患者控制的主动运动触发,通过神经功能重塑的机制最终恢复患者的主动活动能力,表现了新的活力100, 101。此外,针灸对上肢功能的改善得到越来越多的重视,如电针结合力量训练可以减轻慢性脑卒中患者腕关节的痉挛程度102,针灸治疗结合常规运动治疗可以减轻肩关节半脱位患者的关节活动度和力量103

2、脑外伤

1)牵伸训练:常常用于控制过高的肌肉张力、减轻挛缩。但是治疗时可能由于操作不当而出现意外,例如腘绳肌完全断裂等104。上肢肌肉痉挛可导致肌肉挛缩,单纯牵伸治疗并不能避免挛缩105

2)强制性运动疗法(CIMT):一般认为脑外伤的效果不及脑卒中患者。主要原因是由于脑外伤患者比脑卒中患者更容易出现认知障碍,例如记忆力减退、知觉障碍、注意力障碍、思维缓慢、执行能力减退和行为及控制障碍等。Morris证明这些认知和行为改变使脑外伤患者对CIMT的依从性大大下降,最后影响治疗效果106

3)减重训练:目前尚未取得统一结论,可能和损伤部位、严重程度、减重训练方案等因素有关。38位脑外伤患者分别接受减重训练或者常规康复治疗,8周后两组患者的功能性步行分类 (FAC) 平衡能力、Rivermead运动指数和FIM评分都比治疗前有显著提高,但是两组之间并无明显差别107。脑外伤6年以上的20位患者分别进行3个月的减重步行训练和常规步态训练,结果治疗后两组FAC、起立和行走测试都有改善,但两组间无明显差别。常规训练组患者的步态对称性反而好于减重训练组108

3、脊髓损伤

1)部分减重步行训练:近年来部分减重步行训练在脊髓损伤患者中广泛使用,但是由于实验设计存在历史对照、评估偏倚等缺陷使得研究结果的可靠程度不高。因此,Dobkin109人的多中心单盲随机对照研究 (CLILT),纳入发病时间平均为4.5周的145位脊髓损伤患者(其中AISA B38例,ASIA CD137例),比较减重训练和常规训练的差异。减重训练组在12周内接受45次步行训练,每两周评估FIM-步行评分、15.2步行速度、下肢运动评分 (Lower Extremity Motor Score, LEMS) 12周治疗结束时测定6分钟步行距离。两种训练都明显改善患者步行功能,但没有组间差异。发病后4周内开始接受治疗者效果优于4周后开始接受治疗者;两种治疗方法都在约6周以后表现出明显的进步。该结果与该作者报告的6个月随访结果一致110

2)运动功能评定:根据统计111,约75~85%发病后数天内评为ASIA A级的患者在一年以后仍为A级;发病72小时评为B级的患者一年以后仅有20%患者仍为B级;75%C级患者可以进步到D级。因此,ASIA功能分级在脊髓损伤急性期的使用可能不够敏感;更重要的是不能反映行走能力等功能性改变。下肢运动评分 (Lower Extremity Motor Score, LEMS) 是根据双下肢主要肌群的肌力分级进行评估(每侧各25分,总分50分)。根据既往研究结果,脊髓损伤后上下肢运动功能的改善主要在发病后8~26112,而且对于不完全性损伤患者来说,发病后一个月时LEMS>20分是6个月时具有独立步行能力的重要预测指标。因此,在脊髓损伤康复治疗的早期,LEMS可能作为一个重要评估指标。

3)训练基础: Adams观察一位ASIA BSCI患者接受每周3次,共4个月的行走训练,平板步行速度从治疗前1.0 km/h增加到2.5 km/h,步行距离从500增加到1875;股外侧肌的肌纤维横断面积增加了27.1%I型纤维百分比从1.3%增加到24.6% 113T8外伤性脊髓损伤SD大鼠模型在发病一周后接受连续5天(20分钟/次,2/天)的活动平板训练后,与对照组相比,运动组大鼠整体运动功能提高32%,比目鱼肌最大强直收缩肌力增加了38%、肌肉疲劳下降9%,横断面积增加了23%;此外还发现,无论治疗与否,整体运动功能与比目鱼肌最大强制收缩力具有高度相关性(0.74114

4)神经再生的分子生物学基础:已经知道脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)是神经可塑性的重要物质基础;BDNF调控突触蛋白ISynapsin I)的合成和磷酸化过程进而引起神经递质的释放;神经营养因子3Neurotrophin-3, NT-3)是在突触传递和脊髓再生以及保持感觉神经元功能完整性中起到重要作用。运动训练可以提高脊髓功能正常者的BDNFNT-3的浓度。动物实验也证明运动训练能促进脊髓损伤后神经营养因子和突触可塑性的提高。Ying115等人将中段胸髓半切损伤大鼠分为不运动组和运动组(跑笼)并与正常大鼠比较运动3天、7天和28天时的BDNF、突触蛋白I以及NT-3mRNA、蛋白浓度。结果发现,脊髓半切降低BDNF和突触蛋白ImRNA和蛋白表达,但对NT-3没有影响;运动组BDNF和突触蛋白ImRNA和蛋白表达水平明显提高,其中运动组28天的BDNF蛋白浓度比正常对照组高大约40%,运动组28天时NT-3mRNA水平也升高到正常对照的145%。该研究从分子生物学水平部分阐述了运动训练对脊髓损伤后功能恢复的神经基础。

4、外周神经损伤

1)外周神经损伤制动的利弊:外周神经损伤术后常规采用手指夹板固定,防止手指的伸展运动以避免修复后神经产生再次损伤。但是Clare比较了手指夹板使用对手指僵硬度、恢复工作时间等的影响,结果发现不使用夹板者恢复工作需要的时间较短,自我感觉关节僵硬较轻116。因此作者建议没有严重并发症的神经切割伤术后的康复治疗不要使用夹板。

2)格林-巴利综合征:儿童罹患该病两年以后用Wingate无氧测试评估上下肢平均肌力和峰值肌力,结果显示平均臂力是正常值的47.5%,而平均腿力为正常值的83%;峰值臂力和腿力分别为正常值的92.6%116.3%。因此在格林-巴利综合征患儿的治疗应更加关注上肢肌力的恢复11742位平均年龄52岁的患者在发病2周、2月、6月、1年和 2年时评定肌力、握力、手指灵活度、平衡能力、面肌功能、呼吸功能、步态、运动和感觉功能、以及患者对疼痛、疲劳和感觉异常的自我评估。感觉和运动功能主要在第一年内恢复,但是到第二年末,仍然有超过一半的患者遗留有明显的运动和感觉功能障碍118。发病一年后仅有33%的患者自我评估为完全恢复,此外对日常生活和社会活动的自我感觉评估也有明显的障碍,如32%患者因为该病而改换工作、30%患者不能像发病前一样完成家庭内工作以及52%患者不得不根据身体状况改变业余活动的内容119。因此康复治疗应该个体化并且长期坚持。

5、脑瘫

1)异常行为模式:脑瘫是由发生于胎儿期或婴儿期的非进展性脑损害引起的一系列运动、姿势发育异常,最终导致运动受限120Taub等人在2004年提出了发育性忽略(Developmental Disregard)的概念,描述脑瘫患儿在运动功能发育过程中对患侧肢体的忽略和避免使用的情况121Eliasson2003年提出脑瘫患儿的患肢从无正常运动功能的经验和体验122,因此,患肢训练应该着重为使用患侧肢体创造条件、机会和环境,并从行为上纠正患儿的运动模式121, 122

2)强制性运动疗法 (Constraint-induced movement therapy, CIMT) :在成年患者脑血管意外、脑外伤以及手部局灶性张力异常的使用中已经取得相当多的经验,目的是从行为上修正忽略和避免使用患侧肢体的错误模式。因此,CIMT理论上也可以用于偏瘫型脑瘫患儿的治疗。Deluca报道了对18例患儿进行的随机对照交叉研究表明,为期三周的CIMT可以使平均年龄41.5月的患儿显著改善患侧上肢的功能,并且在治疗结束后3周重复评估无明显减退123Eliasson比较了CIMT治疗和传统康复治疗的效果,发现2个月每天2小时的CIMT显著改善了患侧肢体辅助手评分,并且治疗结束后4个月的再次评估仍然保留了良好的治疗效果124。改良的适合儿童特点的CIMT也取得了类似的效果125, 126。此外CIMT用于小儿脑血管意外的治疗也见于少量报道。2小时/天、5/周的改良CIMT训练残留有肢体瘫痪和手功能障碍的缺血性脑血管意外患儿4周后,虽然患肢的感觉运动功能没有明显的改善,但是患儿的功能性活动却有明显改善127

6、小儿麻痹后遗症

儿麻患者的行走速度与同年龄对照组相比减慢28%,而能量消耗增加了40%;并且能量消耗和下肢肌力总和呈负相关(r= -0.84128Hebert129用交叉设计比较膝关节锁定KAFO和支撑相自动锁止KAFO的三维步态分析,发现站立相自动锁止KAFO时患肢摆动相的运动接近正常并减少了骨盆回撤和旋转幅度,降低能耗,提高效率。

四、运动训练方法

1、强制性运动疗法

一项随机对照单盲研究比较了每天3小时、持续两周的CIMT与强化传统治疗对脑卒中早期(发病2周之内)上肢功能恢复的影响,结果发现除了治疗结束时CIMT组患者Fugl-Meyer得分和治疗结束3个月时患肢自我评价显著高于传统治疗组外,虽然CIMT组患者各评价指标得分均高于传统治疗组,但尚未发现存在明显差别130。另外一项随机对照研究比较了3周改良的CIMT和常规治疗对脑卒中患者上肢功能的影响,结果所用的评价指标包括Fugl-MeyerFIM、运动活动日志 (MAL) 和卒中影响量表 (Stroke Impact Scale, SIS)都提示CIMT组患者进步比常规治疗组明显131

2、意念性运动疗法

1)理论基础:运动想象或意念性运动(Movement Imagery or Motor Imagery, MI)是指通过大脑有意识地模拟、训练某一动作而不伴有明显的身体或肢体活动132, 133。此概念早在20世纪80年代晚期及90年代早期就已被提出,近年来随着神经影像学技术如功能性磁共振的显像等的发展,越来越多的研究结果进一步证明了运动想象在改善和恢复运动能力、学习运动技术134-136等方面的作用并部分阐明了该技术的神经基础137-139。运动想象的神经基础主要是大脑可塑性。成年人的皮层代表区不是一成不变的,能根据不同的外周及中枢的神经刺激而发生重新组合;正是大脑可塑性的存在才使得正常的学习和神经损伤以后的功能恢复成为可能。毫无疑问,长时间的废用可以使相应的大脑皮层代表区变小,Zanette等发现相对短时间的废用也可以引起大脑皮层同样的改变140Fiori等人也发现书写痉挛(局灶性痉挛)患者完成意念性转动手部存在困难,并且大脑皮层代表区也会相应变化141

2)临床作用:运动想象也有助于提高正常人的运动能力,比如可以选择性增强肌群的力量142, 143、提高上肢定向运动的速度和准确性144、结合PNF使用可以增加髋关节的活动范围145以及改善老年人的姿势控制能力146。因为运动想象有助于改善和提高很多与职业相关的运动技能,因此,上世纪90年代就有学者将运动想象用于护士和外科医生操作技术的培养和训练147

3)临床应用:运动想象在康复医学中主要用于各种神经损伤性疾病,如脑血管意外135, 148、脊髓损伤139, 149, 150等。如对于中风患者来说,众多研究均认为结合运动想象和常规运动疗法的综合治疗效果优于常规运动治疗,并显著高于无运动治疗者151。无论是在脑血管意外后肢体瘫痪的急性期或长期肢体功能障碍者、无论患者瘫痪的严重程度148, 152, 153,运动想象治疗都有助于改善肢体功能154、坐-站转移151、日常生活活动能力135, 155以及改善单侧空间忽略症状156。对于脊髓损伤患者来说,尚无新证据直接证明运动想象能改善瘫痪肌肉的功能,但是运动想象也能引起大脑运动皮层的功能重组再次得到证明139, 150Muller-Putz等人已经成功利用脑电图采集运动想象诱导的大脑运动信号,通过计算机处理后诱发四肢瘫患者的手或者神经假肢的运动157, 158。运动想象在帕金森病患者中的应用仅见少量报道,并且尚未取得一致结论。有学者认为由于基底节缺乏多巴胺这个病理基础的存在,使帕金森病患者难以完成运动想象的训练而不能产生相应的训练效应159。但新近完成的一项研究证明,在使用多巴胺能药物以后的响应期内进行运动想象训练,确实能够比单纯进行传统运动治疗更能改善由于运动迟缓导致的日常活动能力160。复合性区域性疼痛综合征 (Complex Regional Pain Syndrome, CPRS) 的治疗也是康复医学的难题之一。Moseley等在完成三个系列研究的基础上提出了分级运动想象训练法 (graded motor imagery) 用于CPRS患者可以显著缓解疼痛等症状,取得良好的效果161-163。分级运动想象包括3个连续的阶段。第一阶段:学习、认识、记忆肢体在不同肢体位置下的印象;第二阶段:在不诱发疼痛的前提下尽可能舒缓的完成不同肢体位置的意念性运动;第三阶段:将患侧肢体置于不透明的盒子内,双侧肢体完成同样的动作。Moseley等人的研究证明,在6个月的随访期间,分级运动想象训练有效地缓解了疼痛并改善患侧肢体的功能。

3、康复机器人与运动训练

1)上肢训练:机器人用于康复治疗可以提供高强度、各种重复性任务性活动,并提供交互性功能;此外,还能用于客观、可靠的评价患者的恢复和进步情况164。目前使用于上肢训练的机器人可以提供单侧或双侧肩关节、肘关节2~3个自由度的活动165-167,最新发展的机器人系统(Mechatronic System for Motor Recovery)还能用于腕关节训练168。研究已经证明这些机器人系统辅助训练可以显著提高慢性期脑卒中患者的肢体,包括肩、肘和腕关节的功能165-168。小型化的康复机器人可以制作成类似于能产生动力的矫形器形状(外骨骼),从而起到辅助和引导瘫痪肌肉产生运动的作用并通过产生的肌电信号作为反馈信号控制该动力矫形器的运动。有研究证明即使脑卒中后严重偏瘫患者也能顺利控制其运动并产生良好的训练效果101

2)下肢训练:有研究证明在传统康复治疗的基础上加用机器人辅助行走训练矫形器(Robot-driven gait orthosis, Lokomat)进行每天30分钟的行走训练共4周以后,两组患者行走功能的改善程度无明显差别,但是治疗组患者行走时患侧支撑时间明显延长,增加了行走时双下肢的对称性169。康复机器人训练与治疗时辅助行走训练对患者的能量消耗和下肢肌肉活动产生不同影响。由于康复机器人可能对患肢提供较强的、被动的稳定作用和活动时的引导作用,可以减少患者本身能量消耗和肌肉活动170。虽然康复机器人的强大稳定性支持作用减少了肌肉主动活动,但是其对于正确运动模式的引导作用可能在神经损伤后早期活动训练中起到重要作用171

4、太极拳在康复医学中的应用

1)增强肌力:从运动特点来说,太极拳是一种结合了下肢开链和闭链运动的综合性运动。闭链运动由于有助于控制髌骨的向前移位而被认为是一种增强膝关节周围肌群力量的有效方法之一。有研究证明膝骨关节炎的患者采用计算机辅助的本体感觉易化运动 (Computerized proprioception facilitation exercise, CPFE) 和闭链运动 (Closed kinetic chain exercise, CKCE)都有助于提高关节位置觉、综合功能评估得分、行走速度和肌力;但是CKCE增强伸膝肌群力量的作用更加明显172

2)改善运动控制:太极拳能够加强下肢肌肉协同并改善运动控制173Christou等观察以伸膝肌群最大等长收缩力量的2%30%60%90%进行维持3秒的等长收缩时等长收缩力量的标准差和变异系数,比较患者在接受20周太极拳训练后的运动控制,表明太极拳组的标准差和变异系数比对照组分别下降12.2%18.9%

3)促进本体觉:长期的太极拳运动也有助于提高膝关节的本体感觉功能。有10年太极拳锻炼者膝关节角度偏移值是2.1±1.2°,低于同龄对照组(4.0±3.4°174。该作者另一项研究提示太极拳锻炼的中老年人的膝关节本体感觉与正常年轻人无明显差异(1.7±1.3°1.1±0.5°175

参考文献:

1.    Adams JL, Nuss T, Banks C, Hartman J, Segrest W, Spears J et al. Risk factor outcome comparison between exercise-based cardiac rehabilitation, traditional care, and an educational workshop. Journal of continuing education in nursing 2007;38(2):83-8.

2.    Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2007;115(20):2675-82.

3.    Gademan MG, Swenne CA, Verwey HF, van der Laarse A, Maan AC, van de Vooren H et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. Journal of cardiac failure 2007;13(4):294-303.

4.    Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 2007;49(6):1298-306.

5.    Gao L, Wang W, Liu D, Zucker IH. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 2007;115(24):3095-102.

6.    Akita Y, Otani H, Matsuhisa S, Kyoi S, Enoki C, Hattori R et al. Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS. American journal of physiology 2007;292(5):H2051-9.

7.    Williams AD, Carey MF, Selig S, Hayes A, Krum H, Patterson J et al. Circuit resistance training in chronic heart failure improves skeletal muscle mitochondrial ATP production rate--a randomized controlled trial. Journal of cardiac failure 2007;13(2):79-85.

8.    Andreozzi GM, Leone A, Laudani R, Deinite G, Martini R. Acute impairment of the endothelial function by maximal treadmill exercise in patients with intermittent claudication, and its improvement after supervised physical training. Int Angiol 2007;26(1):12-7.

9.    Badger SA, Soong CV, ODonnell ME, Boreham CA, McGuigan KE. Benefits of a supervised exercise program after lower limb bypass surgery. Vascular and endovascular surgery 2007;41(1):27-32.

10.  Skinner JS, Cooper A, Feder GS. Secondary prevention for patients following a myocardial infarction: summary of NICE guidance. Heart (British Cardiac Society) 2007;93(7):862-4.

11.  Hackam DG, Spence JD. Combining multiple approaches for the secondary prevention of vascular events after stroke: a quantitative modeling study. Stroke; a journal of cerebral circulation 2007;38(6):1881-5.

12.  Hannukainen JC, Janatuinen T, Toikka JO, Jarvisalo MJ, Heinonen OJ, Kapanen J et al. Myocardial and peripheral vascular functional adaptation to exercise training. Scandinavian journal of medicine & science in sports 2007;17(2):139-47.

13.  Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007;115(24):3086-94.

14.  Bradley JM, ONeill B. Short term ambulatory oxygen for chronic obstructive pulmonary disease. Cochrane database of systematic reviews (Online) 2005(2):CD004356.

15.  Nonoyama ML, Brooks D, Lacasse Y, Guyatt GH, Goldstein RS. Oxygen therapy during exercise training in chronic obstructive pulmonary disease. Cochrane database of systematic reviews (Online) 2007(2):CD005372.

16.  Spencer LM, Alison JA, McKeough ZJ. Do supervised weekly exercise programs maintain functional exercise capacity and quality of life, twelve months after pulmonary rehabilitation in COPD? BMC pulmonary medicine 2007;7:7.

17.  Skumlien S, Skogedal EA, Bjortuft O, Ryg MS. Four weeks intensive rehabilitation generates significant health effects in COPD patients. Chronic respiratory disease 2007;4(1):5-13.

18.  Puhan MA, Busching G, Schunemann HJ, VanOort E, Zaugg C, Frey M. Interval versus continuous high-intensity exercise in chronic obstructive pulmonary disease: a randomized trial. Annals of internal medicine 2006;145(11):816-25.

19.  ONeill B, McKevitt A, Rafferty S, Bradley JM, Johnston D, Bradbury I et al. A comparison of twice- versus once-weekly supervision during pulmonary rehabilitation in chronic obstructive pulmonary disease. Archives of physical medicine and rehabilitation 2007;88(2):167-72.

20.  Cockram J, Cecins N, Jenkins S. Maintaining exercise capacity and quality of life following pulmonary rehabilitation. Respirology (Carlton, Vic 2006;11(1):98-104.

21.  Association AD. Standards of medical care in diabetes--2007. Diabetes Care 2007;30 Suppl 1:S4-S41.

22.  Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2006;49(8):1711-21.

23.  Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 2006;29(6):1433-8.

24.  Garcia-Roves PM, Han DH, Song Z, Jones TE, Hucker KA, Holloszy JO. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Am J Physiol Endocrinol Metab 2003;285(4):E729-36.

25.  Pencek RR, Fueger PT, Camacho RC, Wasserman DH. Mobilization of glucose from the liver during exercise and replenishment afterward. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee 2005;30(3):292-303.

26.  Bisquolo VA, Cardoso CG, Jr., Ortega KC, Gusmao JL, Tinucci T, Negrao CE et al. Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia. J Appl Physiol 2005;98(3):866-71.

27.  Ivey FM, Ryan AS, Hafer-Macko CE, Goldberg AP, Macko RF. Treadmill Aerobic Training Improves Glucose Tolerance and Indices of Insulin Sensitivity in Disabled Stroke Survivors. A Preliminary Report. Stroke; a journal of cerebral circulation 2007.

28.  Bruce CR, Hawley JA. Improvements in insulin resistance with aerobic exercise training: a lipocentric approach. Medicine and science in sports and exercise 2004;36(7):1196-201.

29.  Teixeira de Lemos E, Reis F, Baptista S, Pinto R, Sepodes B, Vala H et al. Exercise training is associated with improved levels of C-reactive protein and adiponectin in ZDF (type 2) diabetic rats. Med Sci Monit 2007;13(8):BR168-74.

30.  Maiorana A, ODriscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports medicine (Auckland, NZ 2003;33(14):1013-35.

31.  Segal KR, Edano A, Abalos A, Albu J, Blando L, Tomas MB et al. Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men. J Appl Physiol 1991;71(6):2402-11.

32.  Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J et al. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 2002;25(10):1729-36.

33.  Fenicchia LM, Kanaley JA, Azevedo JL, Jr., Miller CS, Weinstock RS, Carhart RL et al. Influence of resistance exercise training on glucose control in women with type 2 diabetes. Metabolism: clinical and experimental 2004;53(3):284-9.

34.  Praet SF, Manders RJ, Lieverse AG, Kuipers H, Stehouwer CD, Keizer HA et al. Influence of acute exercise on hyperglycemia in insulin-treated type 2 diabetes. Medicine and science in sports and exercise 2006;38(12):2037-44.

35.  Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 2004;53(2):294-305.

36.  Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 2006;29(11):2518-27.

37.  Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 2004;96(1):101-6.

38.  ODonovan G, Kearney EM, Nevill AM, Woolf-May K, Bird SR. The effects of 24 weeks of moderate- or high-intensity exercise on insulin resistance. European journal of applied physiology 2005;95(5-6):522-8.

39.  Jakicic JM, Marcus BH, Gallagher KI, Napolitano M, Lang W. Effect of exercise duration and intensity on weight loss in overweight, sedentary women: a randomized trial. Jama 2003;290(10):1323-30.

40.  Villareal DT, Banks M, Sinacore DR, Siener C, Klein S. Effect of weight loss and exercise on frailty in obese older adults. Archives of internal medicine 2006;166(8):860-6.

41.  Bell LM, Watts K, Siafarikas A, Thompson A, Ratnam N, Bulsara M et al. Exercise alone reduces insulin resistance in obese children independently of changes in body composition. J Clin Endocrinol Metab 2007.

42.  Catenacci VA, Wyatt HR. The role of physical activity in producing and maintaining weight loss. Nature clinical practice 2007;3(7):518-29.

43.  Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Annals of internal medicine 2000;133(2):92-103.

44.  Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obesity research 2004;12(5):789-98.

45.  Kettunen JA, Kvist M, Alanen E, Kujala UM. Long-term prognosis for jumpers knee in male athletes. A prospective follow-up study. The American journal of sports medicine 2002;30(5):689-92.

46.  Wilson JJ, Best TM. Common overuse tendon problems: A review and recommendations for treatment. American family physician 2005;72(5):811-8.

47.  Peers KH, Lysens RJ. Patellar tendinopathy in athletes: current diagnostic and therapeutic recommendations. Sports medicine (Auckland, NZ 2005;35(1):71-87.

48.  Purdam CR, Jonsson P, Alfredson H, Lorentzon R, Cook JL, Khan KM. A pilot study of the eccentric decline squat in the management of painful chronic patellar tendinopathy. British journal of sports medicine 2004;38(4):395-7.

49.  Jonsson P, Alfredson H. Superior results with eccentric compared to concentric quadriceps training in patients with jumpers knee: a prospective randomised study. British journal of sports medicine 2005;39(11):847-50.

50.  Eils E, Rosenbaum D. A multi-station proprioceptive exercise program in patients with ankle instability. Medicine and science in sports and exercise 2001;33(12):1991-8.

51.  Osborne MD, Chou LS, Laskowski ER, Smith J, Kaufman KR. The effect of ankle disk training on muscle reaction time in subjects with a history of ankle sprain. The American journal of sports medicine 2001;29(5):627-32.

52.  Ross SE, Guskiewicz KM. Effect of coordination training with and without stochastic resonance stimulation on dynamic postural stability of subjects with functional ankle instability and subjects with stable ankles. Clin J Sport Med 2006;16(4):323-8.

53.  Monaghan K, Delahunt E, Caulfield B. Ankle function during gait in patients with chronic ankle instability compared to controls. Clinical biomechanics (Bristol, Avon) 2006;21(2):168-74.

54.  Kerkhoffs GM, Rowe BH, Assendelft WJ, Kelly K, Struijs PA, van Dijk CN. Immobilisation and functional treatment for acute lateral ankle ligament injuries in adults. Cochrane database of systematic reviews (Online) 2002(3):CD003762.

55.  van der Wees PJ, Lenssen AF, Hendriks EJ, Stomp DJ, Dekker J, de Bie RA. Effectiveness of exercise therapy and manual mobilisation in ankle sprain and functional instability: a systematic review. The Australian journal of physiotherapy 2006;52(1):27-37.

56.  Veje K, Hyllested JL, Ostergaard K. [Osteoarthritis. Pathogenesis, clinical features and treatment]. Ugeskrift for laeger 2002;164(24):3173-9.

57.  Thomas KS, Muir KR, Doherty M, Jones AC, OReilly SC, Bassey EJ. Home based exercise programme for knee pain and knee osteoarthritis: randomised controlled trial. BMJ (Clinical research ed 2002;325(7367):752.

58.  Penninx BW, Messier SP, Rejeski WJ, Williamson JD, DiBari M, Cavazzini C et al. Physical exercise and the prevention of disability in activities of daily living in older persons with osteoarthritis. Archives of internal medicine 2001;161(19):2309-16.

59.  Mangani I, Cesari M, Kritchevsky SB, Maraldi C, Carter CS, Atkinson HH et al. Physical exercise and comorbidity. Results from the Fitness and Arthritis in Seniors Trial (FAST). Aging clinical and experimental research 2006;18(5):374-80.

60.  Mikesky AE, Mazzuca SA, Brandt KD, Perkins SM, Damush T, Lane KA. Effects of strength training on the incidence and progression of knee osteoarthritis. Arthritis and rheumatism 2006;55(5):690-9.

61.  Foley S, Ding C, Cicuttini F, Jones G. Physical activity and knee structural change: a longitudinal study using MRI. Medicine and science in sports and exercise 2007;39(3):426-34.

62.  Bonaiuti D, Shea B, Iovine R, Negrini S, Robinson V, Kemper HC et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane database of systematic reviews (Online) 2002(3):CD000333.

63.  Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcified tissue international 2000;67(1):10-8.

64.  de Jong Z, Munneke M, Lems WF, Zwinderman AH, Kroon HM, Pauwels EK et al. Slowing of bone loss in patients with rheumatoid arthritis by long-term high-intensity exercise: results of a randomized, controlled trial. Arthritis and rheumatism 2004;50(4):1066-76.

65.  Hakkinen A, Sokka T, Kotaniemi A, Hannonen P. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. Arthritis and rheumatism 2001;44(3):515-22.

66.  Beaupre GS, Lew HL. Bone-density changes after stroke. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2006;85(5):464-72.

67.  Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ. Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Archives of orthopaedic and trauma surgery 2001;121(1-2):75-8.

68.  Jones LM, Legge M, Goulding A. Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralisation of the lower body. Spinal Cord 2002;40(5):230-5.

69.  BeDell KK, Scremin AM, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 1996;75(1):29-34.

70.  Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. European journal of clinical investigation 2003;33(5):412-9.

71.  Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcified tissue international 1997;61(1):22-5.

72.  Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 2004;19(3):360-9.

73.  Vad VB, Bhat AL, Tarabichi Y. The role of the Back Rx exercise program in diskogenic low back pain: a prospective randomized trial. Archives of physical medicine and rehabilitation 2007;88(5):577-82.

74. Pengel LH, Refshauge KM, Maher CG, Nicholas MK, Herbert RD, McNair P. Physiotherapist-directed exercise, advice, or both for subacute low back pain: a randomized trial. Annals of internal medicine 2007;146(11):787-96.

75.  van Tulder M, Malmivaara A, Hayden J, Koes B. Statistical significance versus clinical importance: trials on exercise therapy for chronic low back pain as example. Spine 2007;32(16):1785-90.

76.  NIH Consensus Statement on total knee replacement December 8-10, 2003. J Bone Joint Surg Am 2004;86-A(6):1328-35.

77.  Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P. Stiffness after total knee arthroplasty: prevalence, management and outcomes. The Knee 2006;13(2):111-7.

78.  Rossi MD, Hasson S. Lower-Limb Force Production in Individuals After Unilateral Total Knee Arthroplasty. Archives of physical medicine and rehabilitation 2004;85(8):1279-84.

79.  Mizner RL, Stevens JE, Snyder-Mackler L. Voluntary activation and decreased force production of the quadriceps femoris muscle after total knee arthroplasty. Physical therapy 2003;83(4):359-65.

80.  Rossi MD, Brown LE, Whitehurst M. Knee extensor and flexor torque characteristics before and after unilateral total knee arthroplasty. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2006;85(9):737-46.

81. Ishii Y, Terajima K, Koga Y, Takahashi HE, Bechtold JE, Gustilo RB. Gait analysis after total knee arthroplasty. Comparison of posterior cruciate retention and substitution. J Orthop Sci 1998;3(6):310-7.

82.  Mandeville D, Osternig LR, Chou LS. The effect of total knee replacement on dynamic support of the body during walking and stair ascent. Clinical biomechanics (Bristol, Avon) 2007.

83.  Saari T, Tranberg R, Zugner R, Uvehammer J, Karrholm J. Changed gait pattern in patients with total knee arthroplasty but minimal influence of tibial insert design: gait analysis during level walking in 39 TKR patients and 18 healthy controls. Acta Orthop 2005;76(2):253-60.

84.  Wada M, Kawahara H, Shimada S, Miyazaki T, Baba H. Joint proprioception before and after total knee arthroplasty. Clin Orthop Relat Res 2002(403):161-7.

85.  Attfield SF, Wilton TJ, Pratt DJ, Sambatakakis A. Soft-tissue balance and recovery of proprioception after total knee replacement. J Bone Joint Surg Br 1996;78(4):540-5.

86.  Swanik CB, Lephart SM, Rubash HE. Proprioception, kinesthesia, and balance after total knee arthroplasty with cruciate-retaining and posterior stabilized prostheses. J Bone Joint Surg Am 2004;86-A(2):328-34.

87.  Warren PJ, Olanlokun TK, Cobb AG, Bentley G. Proprioception after knee arthroplasty. The influence of prosthetic design. Clin Orthop Relat Res 1993(297):182-7.

88.  Gerostathopoulos N, Kalliakmanis A, Fandridis E, Georgoulis S. Trimed fixation system for displaced fractures of the distal radius. The Journal of trauma 2007;62(4):913-8.

89.  Hodgson SA, Mawson SJ, Saxton JM, Stanley D. Rehabilitation of two-part fractures of the neck of the humerus (two-year follow-up). Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons  [et al 2007;16(2):143-5.

90.  Jones GR, Jakobi JM, Taylor AW, Petrella RJ, Vandervoort AA. Community exercise program for older adults recovering from hip fracture: a pilot study. Journal of aging and physical activity 2006;14(4):439-55.

91.  Host HH, Sinacore DR, Bohnert KL, Steger-May K, Brown M, Binder EF. Training-induced strength and functional adaptations after hip fracture. Physical therapy 2007;87(3):292-303.

92.  Maciel JS, Taylor NF, McIlveen C. A randomised clinical trial of activity-focussed physiotherapy on patients with distal radius fractures. Archives of orthopaedic and trauma surgery 2005;125(8):515-20.

93.  Mangione KK, Craik RL, Tomlinson SS, Palombaro KM. Can elderly patients who have had a hip fracture perform moderate- to high-intensity exercise at home? Physical therapy 2005;85(8):727-39.

94.  Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clinical rehabilitation 2004;18(1):27-39.

95.  Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med 2007;39(1):14-20.

96.  Patten C, Lexell J, Brown HE. Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. Journal of rehabilitation research and development 2004;41(3A):293-312.

97.  Allison R, Dennett R. Pilot randomized controlled trial to assess the impact of additional supported standing practice on functional ability post stroke. Clinical rehabilitation 2007;21(7):614-9.

98.  Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Archives of physical medicine and rehabilitation 2007;88(7):833-9.

99.  Hedman LD, Sullivan JE, Hilliard MJ, Brown DM. Neuromuscular electrical stimulation during task-oriented exercise improves arm function for an individual with proximal arm dysfunction after stroke. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2007;86(7):592-6.

100.      Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of physical medicine and rehabilitation 2007;88(2):142-9.

101.       Stein J, Narendran K, McBean J, Krebs K, Hughes R. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2007;86(4):255-61.

102.       Mukherjee M, McPeak LK, Redford JB, Sun C, Liu W. The effect of electro-acupuncture on spasticity of the wrist joint in chronic stroke survivors. Archives of physical medicine and rehabilitation 2007;88(2):159-66.

103.       Shin BC, Lim HJ, Lee MS. Effectiveness of combined acupuncture therapy and conventional treatment on shoulder range of motion and motor power in stroke patients with hemiplegic shoulder subluxation: a pilot study. The International journal of neuroscience 2007;117(4):519-23.

104.       Chua SG, Kong KH. Complete semimembranosus rupture following therapeutic stretching after a traumatic brain injury. Brain Inj 2006;20(6):669-72.

105.       Harvey L, de Jong I, Goehl G, Mardwedel S. Twelve weeks of nightly stretch does not reduce thumb web-space contractures in people with a neurological condition: a randomised controlled trial. The Australian journal of physiotherapy 2006;52(4):251-8.

106.       Morris DM, Shaw SE, Mark VW, Uswatte G, Barman J, Taub E. The influence of neuropsychological characteristics on the use of CI therapy with persons with traumatic brain injury. NeuroRehabilitation 2006;21(2):131-7.

107.       Wilson DJ, Powell M, Gorham JL, Childers MK. Ambulation training with and without partial weightbearing after traumatic brain injury: results of a randomized, controlled trial. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2006;85(1):68-74.

108.       Brown TH, Mount J, Rouland BL, Kautz KA, Barnes RM, Kim J. Body weight-supported treadmill training versus conventional gait training for people with chronic traumatic brain injury. The Journal of head trauma rehabilitation 2005;20(5):402-15.

109.       Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabilitation and neural repair 2007;21(1):25-35.

110.       Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 2006;66(4):484-93.

111.       Geisler FH, Coleman WP, Grieco G, Poonian D. Measurements and recovery patterns in a multicenter study of acute spinal cord injury. Spine 2001;26(24 Suppl):S68-86.

112.       Geisler FH, Coleman WP, Grieco G, Poonian D. The Sygen multicenter acute spinal cord injury study. Spine 2001;26(24 Suppl):S87-98.

113.       Adams MM, Ditor DS, Tarnopolsky MA, Phillips SM, McCartney N, Hicks AL. The effect of body weight-supported treadmill training on muscle morphology in an individual with chronic, motor-complete spinal cord injury: A case study. The journal of spinal cord medicine 2006;29(2):167-71.

114.       Stevens JE, Liu M, Bose P, OSteen WA, Thompson FJ, Anderson DK et al. Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. Journal of neurotrauma 2006;23(11):1671-81.

115.       Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Experimental neurology 2005;193(2):411-9.

116.       Clare TD, de Haviland Mee S, Belcher HJ. Rehabilitation of digital nerve repair: is splinting necessary? Journal of hand surgery (Edinburgh, Lothian) 2004;29(6):552-6.

117.       Fehlings D, Vajsar J, Wilk B, Stephens D, Oded BO. Anaerobic muscle performance of children after long-term recovery from Guillain-Barre syndrome. Developmental medicine and child neurology 2004;46(10):689-93.

118.       Forsberg A, Press R, Einarsson U, de Pedro-Cuesta J, Widen Holmqvist L. Impairment in Guillain-Barre syndrome during the first 2 years after onset: a prospective study. Journal of the neurological sciences 2004;227(1):131-8.

119.       Bernsen RA, de Jager AE, van der Meche FG, Suurmeijer TP. How Guillain-Barre patients experience their functioning after 1 year. Acta neurologica Scandinavica 2005;112(1):51-6.

120.       Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B et al. Proposed definition and classification of cerebral palsy, April 2005. Developmental medicine and child neurology 2005;47(8):571-6.

121.       Taub E, Ramey SL, DeLuca S, Echols K. Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 2004;113(2):305-12.

122.       Eliasson AC, Bonnier B, Krumlinde-Sundholm L. Clinical experience of constraint induced movement therapy in adolescents with hemiplegic cerebral palsy--a day camp model. Developmental medicine and child neurology 2003;45(5):357-9.

123.       Deluca SC, Echols K, Law CR, Ramey SL. Intensive pediatric constraint-induced therapy for children with cerebral palsy: randomized, controlled, crossover trial. Journal of child neurology 2006;21(11):931-8.

124.       Eliasson AC, Krumlinde-sundholm L, Shaw K, Wang C. Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Developmental medicine and child neurology 2005;47(4):266-75.

125.       Charles JR, Wolf SL, Schneider JA, Gordon AM. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Developmental medicine and child neurology 2006;48(8):635-42.

126.       Naylor CE, Bower E. Modified constraint-induced movement therapy for young children with hemiplegic cerebral palsy: a pilot study. Developmental medicine and child neurology 2005;47(6):365-9.

127.       Gordon A, Connelly A, Neville B, Vargha-Khadem F, Jessop N, Murphy T et al. Modified constraint-induced movement therapy after childhood stroke. Developmental medicine and child neurology 2007;49(1):23-7.

128.       Brehm MA, Nollet F, Harlaar J. Energy demands of walking in persons with postpoliomyelitis syndrome: relationship with muscle strength and reproducibility. Archives of physical medicine and rehabilitation 2006;87(1):136-40.

129.       Hebert JS, Liggins AB. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis. Archives of physical medicine and rehabilitation 2005;86(8):1676-80.

130.       Boake C, Noser EA, Ro T, Baraniuk S, Gaber M, Johnson R et al. Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabilitation and neural repair 2007;21(1):14-24.

131.       Wu CY, Chen CL, Tsai WC, Lin KC, Chou SH. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Archives of physical medicine and rehabilitation 2007;88(3):273-8.

132.       Guillot A, Collet C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain research 2005;50(2):387-97.

133.       Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 2004;14(11):1246-55.

134.       Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for relearning of people after brain injury. Brain Inj 2004;18(11):1163-72.

135.      Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation 2004;85(9):1403-8.

136.       Nyberg L, Eriksson J, Larsson A, Marklund P. Learning by doing versus learning by thinking: An fMRI study of motor and mental training. Neuropsychologia 2006;44(5):711-7.

137.       Ehrsson HH, Geyer S, Naito E. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. Journal of neurophysiology 2003;90(5):3304-16.

138.       Lacourse MG, Turner JA, Randolph-Orr E, Schandler SL, Cohen MJ. Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. Journal of rehabilitation research and development 2004;41(4):505-24.

139.       Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Effects of motor imagery training after chronic, complete spinal cord injury. Experimental brain research Experimentelle Hirnforschung 2007;177(2):233-42.

140.       Zanette G, Manganotti P, Fiaschi A, Tamburin S. Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol 2004;115(6):1264-75.

141.       Fiorio M, Tinazzi M, Aglioti SM. Selective impairment of hand mental rotation in patients with focal hand dystonia. Brain 2006;129(Pt 1):47-54.

142.       Sidaway B, Trzaska AR. Can mental practice increase ankle dorsiflexor torque? Physical therapy 2005;85(10):1053-60.

143.       Glover S, Dixon P, Castiello U, Rushworth MF. Effects of an orientation illusion on motor performance and motor imagery. Experimental brain research Experimentelle Hirnforschung 2005;166(1):17-22.

144.       Gentili R, Papaxanthis C, Pozzo T. Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience 2006;137(3):761-72.

145.       Williams JG, Odley JL, Callaghan M. Motor Imagery boosts proprioceptive neuromuscular facilitation in the attainment and retention of range-of-motion at the hip joint. Journal of Sports Science and Medicine 2004;3(3):160-6.

146.       Hamel MF, Lajoie Y. Mental imagery. Effects on static balance and attentional demands of the elderly. Aging clinical and experimental research 2005;17(3):223-8.

147.       Bathalon S, Dorion D, Darveau S, Martin M. Cognitive skills analysis, kinesiology, and mental imagery in the acquisition of surgical skills. The Journal of otolaryngology 2005;34(5):328-32.

148.       Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke; a journal of cerebral circulation 2006;37(7):1941-52.

149.       Alkadhi H, Brugger P, Boendermaker SH, Crelier G, Curt A, Hepp-Reymond MC et al. What disconnection tells about motor imagery: evidence from paraplegic patients. Cereb Cortex 2005;15(2):131-40.

150.       Cramer SC, Lastra L, Lacourse MG, Cohen MJ. Brain motor system function after chronic, complete spinal cord injury. Brain 2005;128(Pt 12):2941-50.

151.       Malouin F, Richards CL, Doyon J, Desrosiers J, Belleville S. Training mobility tasks after stroke with combined mental and physical practice: a feasibility study. Neurorehabilitation and neural repair 2004;18(2):66-75.

152.       Kimberley TJ, Khandekar G, Skraba LL, Spencer JA, Van Gorp EA, Walker SR. Neural substrates for motor imagery in severe hemiparesis. Neurorehabilitation and neural repair 2006;20(2):268-77.

153.       Crosbie JH, McDonough SM, Gilmore DH, Wiggam MI. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clinical rehabilitation 2004;18(1):60-8.

154.       Dijkerman HC, Ietswaart M, Johnston M, MacWalter RS. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clinical rehabilitation 2004;18(5):538-49.

155.       Page SJ, Levine P, Leonard AC. Effects of mental practice on affected limb use and function in chronic stroke. Archives of physical medicine and rehabilitation 2005;86(3):399-402.

156.       Rode G, Klos T, Courtois-Jacquin S, Rossetti Y, Pisella L. Neglect and prism adaptation: a new therapeutic tool for spatial cognition disorders. Restorative neurology and neuroscience 2006;24(4-6):347-56.

157.       Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. EEG-based neuroprosthesis control: a step towards clinical practice. Neuroscience letters 2005;382(1-2):169-74.

158.       Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomedizinische Technik 2006;51(2):57-63.

159.       Frak V, Cohen H, Pourcher E. A dissociation between real and simulated movements in Parkinsons disease. Neuroreport 2004;15(9):1489-92.

160.       Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinsons disease. Neurorehabilitation and neural repair 2007;21(1):68-75.

161.       Moseley GL. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial. Pain 2004;108(1-2):192-8.

162.       Moseley GL. Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain 2005;114(1-2):54-61.

163.       Moseley GL. Graded motor imagery for pathologic pain: a randomized controlled trial. Neurology 2006;67(12):2129-34.

164.       Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of rehabilitation research and development 2006;43(2):171-84.

165.       Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation 2002;83(7):952-9.

166.       Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. Journal of rehabilitation research and development 2000;37(6):653-62.

167.       Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of physical medicine and rehabilitation 2003;84(6):915-20.

168.       Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 2005;13(3):311-24.

169.       Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke; a journal of cerebral circulation 2007;38(2):349-54.

170.       Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical therapy 2006;86(11):1466-78.

171.       Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Physical therapy 2005;85(1):52-66.

172.       Lin DH, Lin YF, Chai HM, Han YC, Jan MH. Comparison of proprioceptive functions between computerized proprioception facilitation exercise and closed kinetic chain exercise in patients with knee osteoarthritis. Clinical rheumatology 2007;26(4):520-8.

173.       Christou EA, Yang Y, Rosengren KS. Taiji training improves knee extensor strength and force control in older adults. The journals of gerontology 2003;58(8):763-6.

174.       Tsang WW, Hui-Chan CW. Effects of tai chi on joint proprioception and stability limits in elderly subjects. Medicine and science in sports and exercise 2003;35(12):1962-71.

175.       Tsang WW, Hui-Chan CW. Effects of exercise on joint sense and balance in elderly men: Tai Chi versus golf. Medicine and science in sports and exercise 2004;36(4):658-67.